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Surface wave propagation in a random layered medium 

B Lenoach 
Department of Applied Mathematics, National Institute for Higher Education, Plassey 
Technological Park, Limerick, Ireland 

Received 19 March 1985, in final from 21 November 1986 

Abstract. We consider the propagation of surface Love waves in a random layered elastic 
medium. The material parameters in the model are stochastic functions of the vertical 
coordinates x3: we include the general case when the wave propagates through a statistically 
inhomogeneous layer. We apply the averaging method for stochastic equations. The 
method essentially involves approximating the expectation of the solution with averages 
formed by integrating various moments of the random coefficients over ‘long’ times (long 
relative to the correlation time, see 5 3). This method provides higher-order corrections to 
the purely asymptotic approximations which are often used to solve equations of this type. 
It is shown that the mean wave amplitude always attenuates exponentially on the depth 
scale E ’ X ~  where E is the fluctuation parameter. We analyse the dispersion relation for a 
statistically homogeneous layer and find a criterion which determines whether the mean 
phase velocity is decreased by the fluctuations. 

1. Introduction 

Random media are now widely studied in continuum mechanics (see, for example, 
Ishimaru 1982, Chow et a1 1980); their value in the study of seismic wave propagation 
has been discussed by Hudson (1982). In this paper we consider the problem of Love 
waves in a layered medium consisting of a random elastic layer coupled to a 
homogeneous half-space. Specifically, the material parameters of the layer are taken 
to be random functions of the vertical coordinates x3. We examine two distinct models 
as follows. 

(i) The mean values of the material parameters are constant so that the layer is 
statistically homogeneous. 

(ii) The physical situation (Aki and Richards 1980) suggets that it is interesting to 
also consider a model in which the mean values of the density and rigidity increase 
with the layer depth. In order to maintain a balance between a realistic model and a 
tractable one, the increase in the mean values is taken to be small, i.e. of the same 
order as the random perturbations themselves. This is done by assuming positive 
random coefficients. These processes are therefore non-stationary so the layer is now 
statistically inhomogeneous. In other words, the material parameters are no longer 
invariant under translation along the xj  axis. 

The first model may be regarded as a special case of the second. A quite different 
approach to the same general problem may be found in Hudson (1970). 

We employ the averaging method for stochastic equations (Frigerio er a1 1981). 
This method, introduced into the literature on random wave propagation in a previous 
paper (Lenoach 1983a) is suitable for stochastic problems in physics where the fluctu- 
ations, although small, are finite. Moreover, the method is designed to avoid the 
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2368 B Lenoach 

problem of secular terms which arises with regular perturbation theory and, on occasion, 
with the smoothing method (Hudson 1982). 

The basic problem is formulated in 0 2; in 0 3 we give a brief account of our method. 
The asymptotic solution for (i)  above, which we shall refer to as the statistically 
homogeneous model, is then given. We solve the more complicated second model to 
the same order in the fluctuation parameter E :  in both cases the random terms produce 
exponential attenuation on the depth scale &'x3. We also examine the dispersion 
relation obtained by requiring continuity of the motion-stress vector across the inter- 
face. This relation gives the shift in the phase velocity due to the fluctuations. It is 
shown that in general the phase shift and the amplitude attenuation are decoupled. 
Finally we derive, for the symmetric model, a criterion to determine whether the mean 
phase velocity is decreased by the fluctuations (as one might expect on physical 
grounds). 

2. Formulation of the problem 

We assume that the half-space x3 > H and the layer 0 6 x3 6 H are isotropic linearly 
elastic solids and that no body forces are present. The equations of motion (Achenbach 
1973) are then 

at,,/ax, = p a 2 U , / a t 2  (2.1) 

where U,, i = 1,2 ,  3, are the displacement components, p denotes the material density 
and the summation convention is employed. Here that t,, are the Cartesian components 
of the Cauchy stress tensor which is related to the displacements via the isotropic 
stress-strain constitutive relations, 

Assume that 

(2.3) 

where pl(x3), PI(x3) are random perturbations. Mathematically p I  and p1 are stochastic 
processes on the probability space (a, P) indexed by x 3 e  [0, H I  (Wentzell 1981) with 

Mp(x3 )  = ( P I ) 4 ( X 3 )  =(PI) 

(2.4) 

denoting the mean and correlation functions. E is a small dimensionless positive 
constant characterising the size of the fluctuations: the angular brackets denote expecta- 
tion (average), i.e. integration over fl with respect to the measure P (Wentzell 1981). 
As we shall see, the detailed form of the averaging approximations becomes quite 
complicated, particularly in the general case of a statistically inhomogeneous layer. 
We shall therefore adopt the simplifying assumption that the coefficients p ,  and p ,  
are statistically independent. We are interested in the effect of random fluctuations 
on the usual Love-wave solution of equations (2.1) and (2.2) (Aki and Richards 1980). 
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Therefore we take the material parameters of the half-space to be the constants p2 ,  p2 
and write 

uj = Sj2  exp[ i k( x, - c t ) ]  V( x,) 

= Sj2 exp[ik(x, - ct)] W(x3) 

O=SX,<H 

x3> H (2.5) 
so that c is the phase velocity and k is the wavenumber. At this point, it is useful to 
clarify the role of the variables c and k. It is assumed that one of these quantities, k 
(say) is prescribed and the other is then determined by the dispersion relation which 
is itself derived from the boundary conditions, namely continuity of the displacement 
u2 and shear stress t23 at the interface x3 = H. It follows from the equations of motion 
that the shear stress t 2 3  must have the form 

223 = T(x3) exp[ik(x, -et)] (2.6) 
where T(0)  = 0 because x j  = 0 is a traction-free surface. In fact, as we shall see in 0 6, 
the dispersion relation implies that c itself is a random variable. Let 

P ;  = POPOl 

d =  ( ( 4 2 / P ; -  1 )  

P :  = P2Pil 

a:= ( 1  - W 2 / P 3  
(2.7) 

where P2 is the shear-wave velocity in the half-space. It can be shown that solutions 
with real frequency and wavenumber exist only if we assume that 

P o <  c < P 2  (2.8) 
which implies wi > 0, a: > 0. Define the complex motion-stress vector r(x3) as follows: 

V + i T /  kwopo 
V - i T/ kwoPo 4x3) = ( (2.9) 

Equations (2.1)-(2.5) give, to order E ~ ,  

dr/dx3 = [Lo+ &LI(x3) + ~ ~ L ~ ( x ~ ) ] r ( x ~ )  (2.10) 
where 

0 ikw, 2 Lo= ( (2.11) 

2 kw, 

In order to eliminate the first term on the right-hand side of equation (2.10) we define 

q(x3) = e v ( -  Lox3)r(x3) (2.12) 
so that 

(2.13) 

where A,(x3) =exp(- LoxI)L,(x3) exp(lox3),  i = 1,2.  The point of these transforma- 
tions is that the equations of motion are now in a form suitable for a direct application 
of the averaging method. 
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We emphasise that the parameters k, p 2 ,  p 2 ,  po and po are sure, i.e. non-random 
coefficients in the differential equation for the displacement and stress components 
V ( x , )  and T(x, ) .  The constant rigidities p 2 ,  po and densities p z ,  po are known for a 
given model: k is also prescribed and c is then determined from the dispersion relation 
(see 5 6). The random nature of the medium enters through the fluctuations p ,  and 
p i :  it is the stochastic nature of p l  and p ,  which makes the solution q a vector of 
stochastic processes, i.e. each component is a stochastic process. 

3. The extended averaging method 

In this section we outline the results of the averaging method for stochastic equations 
(Frigerio et a1 1981) and give the extension required to deal with the case when the 
mean values M ,  and M,, are functions of the depth variable x3. In general one may 
consider an equation on ZR" of the form 

df'( t ) /dt  = EA( t w ) f 3 (  t )  

f "(0) =fo. 

(3.1) 
with given initial data 

Here w denotes a point in the sample space R (Wentzell 1981), the function A ( t )  is 
assumed continuous and the vectorf, is independent of w,  i.e. (fo) =fo. EA( t )  may be 
replaced by the power series EkPI ckAk( t )  without additional difficulty. 

The averaging method is concerned with asymptotic (in the sense described below) 
approximations to the average of the solution vector (f')( t ) .  Note that higher moments 
of the solution may be found, if required, by looking at appropriate outer products 
(Lancaster 1969) of the basic vector J: 

Let us clarify the sense in which we use the term asymptotic here. In equation 
(3.1), the random term A ( t )  is multiplied by the small parameter E :  in these circum- 
stances random terms are significant only over long times. In particular, when we 
speak of the asymptotic approximation to the average ( f ' ) ( t )  we have in mind the 
case of small fluctuations and large times, i.e. small E and large values of r. It is in 
this case that stochastic effects are important: a lengthy treatment of this point may 
be found in the review of Papanicolaou (1978). 

Before we give an outline of the relevant details of the averaging method, we pause 
to explain the physical meaning of the asymptotic approximation for the model 
described in § 2. Let v be a typical correlation length in the layer, for example in the 
statistically homogeneous model one may take 

v = f (  V& + v,) 
where 

and v, is defined similarly. Then asymptotic approximations to the equation of motion 
(2.13) are valid for small E and large values of the dimensionless length x i  = x , v - ' .  

There are essentially two separate cases to be considered with the averaging method: 
in the first one assumes that 

(3.2) ( A ( r , ) .  9 * A(t*m+,)) = o  m =0, 1 , 2 , .  . . 
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i.e. all odd moments of the coefficient matrix vanish. This will be true, for example, 
when the random coefficients p1  and F~ are zero-mean Gaussian processes. 

If equation (3.2) holds then the approximation, which becomes exact in the limit 
E '0, t +  CO with E 2 t  = T finite (Papanicolaou 1978), is 

( f ' ) ( t )  = exp(&2tG'2')fo+O(E2) (3.3) 

where 

(3.4) 

In the second case when (A,)(?) is a function of t ,  which means that equation (3.2) 
does not hold, the purely asymptotic approximation is 

(f"( t ) )  - exp( &fG(l))fO+ O( E )  

G'" = lim T-' loT (A,)(?) dt. 
T - . r  

(3.5) 

In this case it is evident that in a physical problem such as ours where E is a small 
but finite parameter, the latter approximation is rather crude. The following more 
accurate approximation may be obtained from the averaging method: 

(3 .6)  ( f " ) ( t )  - (1 + E M " ' (  t ) )  exp[Et(G'"+ E G ' ~ ' ) ] ~ ~ + O ( E ~ )  

where 

M " ' ( t )  = ds[(Al)(s) - G"'] lo' 
G'2'= T+W lim T-I ~ o T d t ( ~ A ~ ( t ~ ) + ~ ~ ' d s c o v ( A i ( t ) , ~ l ( s ) )  

We have used the notation 

cov(Ai,(t), A i ( s ) )  = (Ai(t)Ai(s))-(Ai(t))(Ai(s)) 
and [G"', A,(s)]-  denotes the commutator of G"' and A,(s).  Notice that, by definition, 
G"' is just the leading term in Al( r ) .  It follows that M " ' ( t )  will not contain any 
secular terms, i.e. terms which grow at a rate proportional to t .  The formula for G"' 
is also written in a way which shows that divergent leading terms can be expected to 
cancel each other out. We close this section with a remark on the accuracy of the 
asymptotic approximations outlined here. From a technical point of view it is very 
difficult to obtain concrete error estimates for asymptotic solutions to stochastic 
equations. Nevertheless, when we described our basic approximation schemes as being 
accurate to 0 ( s 2 ) ,  we meant that the error in these approximations is known to be 
bounded above (Frigerio er a1 1981) by ME' for some finite positive number M whose 
precise value is an  extremely complicated function of the many parameters in a model 
of this type. For example, M depends on the precise from of the correlation functions 
chosen and  the values of the correlation lengths. The interested reader may find more 
technical details in the previously cited paper (Frigerio et al 1981). We now consider 
the statistically homogeneous model which corresponds to case (i) of § 1. 



2372 B Lenoach 

4. Solution of the statistically homogeneous model 

In the statistically homogeneous model the random perturbations are centred, i.e. 

M,(x3) = 0 = M,(X3) (4.1) 

and the correlation functions are stationary: 

(4.2) 

in other words, the fluctuations are invariant under translations along the x3 axis. The 
applicable approximation formulae are equations (3.3) and (3.4): if one defines the 
half Fourier transforms 

S p p ( a )  = low exp(iar)R,,(r) d r  

S P p ( a )  = lor exp(iar)R,,(r) d r  
(4.3) 

then a calculation gives the components of the mean motion-stress vector in the 
compact form 

( V)(x3) = V ( 0 )  exp(-P~*x,)  cos(ku,+ .5’6)x3 

(T)(x3) = - ka,poV(0) exp(-P&’x,) s i n ( k u , + ~ ~ S ) x ~  
(4.4) 

where 

6 and P are the phase and amplitude modulations, respectively, caused by the fluctu- 
ations introduced in equation (2.3). Observe that the solution is characterised by the 
values of the transforms S,,(a) and S,,(a) at two wavenumbers, zero and 2k1.7,. In 
addition, the correlation functions do not have to be specified beyond the requirement 
that they decrease rapidly enough so that the integrals in equation (4.3) exist. The 
solution given in equation (4.4) is valid for small E and large values of the dimensionless 
length x3v-I (see 0 3). A more detailed physical interpretation of this solution will be 
given below. 

5. The statistically inhomogeneous model 

Experimental surface-wave data (Aki and Richards 1980) indicates that it may be more 
realistic to consider a model in which the mean values increase with the depth in the 
layer. One may retain the assumption of symmetric random perturbations so that p 
(say) is given by p = p o ( l + ~ p I )  with ( p , ) = O  and po(x3) is a sure function which is 
compatible with experimental estimates of the density profile. 
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An alternative approach, adopted here, is to keep po constant and incorporate the 
heterogeneous nature of the medium in the random terms. Our approach has the 
advantage that the sure problem ( E  = 0) is simple and therefore has an explicit solution. 
On the other hand, it is restricted in the sense that the mean ( p )  = e ( p l ) ( x , )  is propor- 
tional to E.  In  other words, the increase in the mean is small, of the same order as 
the fluctuations themselves whereas one may put po = po(x, )  without this constraint. 
In the latter case, however, it may be necessary to introduce a small parameter in order 
to solve the heterogeneous sure problem. Indeed, a standard method for solving 
surface-wave problems in a vertically inhomogeneous medium is numerical integration 
of the equations of motion and it is difficult to implement this approach when 
fluctuations are present. Therefore our approach should be regarded as a model of a 
complicated physical situation: we do not claim that it is equivalent to the alternative 
approach described above. 

A relatively simple method of biasing the random material parameters pI and p l  
in order to model the statistically inhomogeneous layer is to require that the processes 
p l  and p1  be non-negative. It turns out that the simplest choice is when pl  and p I  are 
squares, i.e. 

PI ( x 3 )  = x 2 ( x 3 )  F * ( X J  = Y 2 ( X 3 )  (5.1) 

( X )  = 0 = ( Y )  

where X ( x 3 )  and Y ( x 3 )  are independent centred Gaussian processes 

We do not yet have to specify the correlation functions beyond the requirement that, 
for fixed x3 (say), Rxx ( x 3 ,  x i )  and R Y Y ( x 3 ,  x i )  are rapidly decreasing functions of xi. 
The mean values are now 

M p ( x 3 )  = R x x ( x 3 ,  x3) M p ( x 3 )  = RYY(X3,  x ; )  ( 5 . 3 )  

and the Gaussian expansion of higher moments in terms of the first two moments 
(Wentzell 1981) gives 

cov(pl(x3), p l ( x ; ) )  = ( p l ( x 3 ) p l ( x ; ) )  - ( p l ( x 3 ) ) ( p l ( x i ) )  

COV(F,(X3), P A X ; ) )  = 0. 

In the author’s thesis (Lenoach 1983b) it is shown that, in accordance with what one 
might expect on physical grounds, no qualitative feature of the solution depends on 
whether squares or absolute values are chosen to represent p1  and p I  although the 
latter are considerably more awkward to work with. Therefore we henceforth work 
with the choice expressed in equation (5.1). Combining equations (3.5) and (5.1) gives 

( 5 . 5 )  

This result simplifies the calculations considerably because equation ( 5 . 5 )  implies that 
the relevant approximation formula is 

(5.6) 

G‘” = 0. 

(f‘( t ) )  - (1 + EM“’(  t ) )  exp( E z r G ( ” ) f o .  
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The small x j  correction term has the simple form 

where * denotes the complex conjugate and 

Also the formula for G'" is simplified by the fact that G"' = 0; the result is 

G'" = diag( y, y * )  

k 2 a i  (g) lim z-' Ioz dz  1:' dz2 f( z, , z 2 )  
- 3i kwo 

y=---T- P o a o  z" 

f ( z l ,  z2) = R i x ( z l ,  z d l  -exp 2ika0(z, - 4 1  
+R:y(z,, z2)[1 - ( P ; / ( C ) ~ ) ( W ~ -  1)2 exp 2ikao(zl -z2)]. 

Note that the wave always attenuates on the slow depth scale E ' X ,  because 

(5.7) 

Re( y )  = - k2a(  s) lim z-' 1; dz, 1: ~ z ~ { R $ ~ ( z ~ ,  z2)[ 1 -cos 2ka0(zl - z2)l 
0 0 L'CC 

+ R:y(Zi, z2)[1- ( p ; / ( ~ ) ~ ) ( d -  COS 2kao(zi - 22)Il < O  
since a sufficient condition for positivity of the integrand is ( c ) ~  > ,8;( ai - 1)2 which is 
always satisfied because Po < (c). Equations (5.5)-(5.9) yield the corrected asymptotic 
approximation 

(V)(x,) = V(0) exp( E'X, Re( ?)){cos[ k a o  - E' Im( y)]x3 

+ E  Re M(x,) cos[kao+E2 Im(y)]x3 

+ E  Im M(x3)  sin[kao+ E' Im(y)]x,} 

(T)(x,) = -ka,,FoV(O) e x p ( ~ * x ,  Re(y){sin[kao-E2 Im(y)]x, 

+ E  Re M ( x 3 ) { s i n [ k a 0 + ~ * I m ( y ) ] x 3 - ~  Im M(x3)  

- E  Im M(x3) cos[kao+ E' Im(y)]x,} 

(5.10) 

where M(x3)  and y are given by equations (5.8) and (5.9), respectively. Observe that, 
in contrast to the homogeneous case, the wave does not jump from pure oscillatory 
behaviour in x 3 s  H to exponential fall-off for x,> H. Instead, the transition at the 
boundary is essentially a change in the scale of amplitude decrease. In this sense 
fluctuations in the layer produce smoother physical behaviour: this remark also applies 
to the statistically homogeneous model since the function /3 in equation (4.5) is positive 
for any set of correlation functions. 

6. The dispersion relation 

So far we have not used the boundary conditions in this problem which are 

and 
( i )  the displacement w2 and stress t , ,  must be continuous at the interface xj  = H, 

( i i )  the plane surface x3 = 0 is free of traction, tZ3(O) = 0. This condition has been 
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incorporated into the initial data of equation (2.13), T ( 0 )  = 0. The acceptable displace- 
ment W ( x , )  in the half-space is just 

(6.1 ) 

for some constant A. Actually the boundary condition (i)  makes A a random variable, 
A = A ( w )  since (i)  leads to 

W (  x 3 )  = A exp( - ku2x3)  

V (  H, w )  = A exp( - ku,H) 

T(  H, w )  = - ku2p2A exp( - b 2 H )  

from which one obtains the mean value ( A )  = exp( ku ,H) (  V)( H ) .  
The dispersion relation is therefore 

V ( H ,  w )  = -UH, U)lk82P2 = - T ( H ,  w)f((c))  

where 

and we use this notation since k, p2 and p2 are given. Since f((c)) is independent of 
w, we may take expectations to obtain 

f ( ( c ) )  = - ( v ) (m/ (T) (W.  (6.2) 

This equation gives the mean phase velocity (c) as a function of the wavenumber 
k: we shall examine the dispersion relation (6.2) for the statistically homogeneous 
model and compare it with the formula valid in the absence of fluctuations. Combining 
equations (4.4) and (6.2) yields 

tan(ku,+ E’S)H = p2u2/pouo. (6.3) 

The only difference between this and the dispersion for the homogeneous case is the 
factor c2S on the left-hand side. Let us rewrite the last equation in terms of the 
dimensionless variables x = ( c ) p ; ’  and kv where v is the correlation length. For fixed 
kv we have 

Mfb) + g ( x ) l =  h ( x )  1 < x s p2p;l (6.4) 

where 

f ( x ) =  H’(k)(x2-  1)1’2 

H I =  ~ - 1 ~  

h ( x )  = (p2/po)( 1 - X’p;p;’) ‘ I 2 / ( X 3  - 1 )  ‘ I 2  

and we have E’<< 1, H’>> 1 with e 2 H ’  of order one. Notice that f ( x )  is monotonically 
increasing while h ( x )  decreases monotonically in the given range of x values. Let x R  
denote a root of equation (6.4) and x, the corresponding root when E = 0, i.e. the 
scaled phase velocity of the homogeneous problem. Equation (6.4) has an infinity of 
roots each of which corresponds to a mode of propagation. For the nth mode we have 

For a given model, i.e. a specific set of correlation functions, layer velocities, etc, one 
may then numerically solve equation (6.5) to obtain the dispersion curves. From the 
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monotonic properties o f f  and h it follows that 

g ( x ) ~ o ~ x R ~ x O .  ( 6 . 6 )  

For example, if we assume that 

R,, = R(  r)  = R,, ( 6 . 7 )  

then equation (4.5) gives 

g(x) = &*Hkao[ 1 - 2ku0 Im S(2kao)] 

and hence we see that the phase velocity is decreased by the fluctuations if 

(2kaO) lom R(r )  sin(2kaor) d r  < 1. ( 6 . 8 )  

One may check that this condition is satisfied for the usual exponential correlation 
functions. In particular 

R ( r )  = exp( - r/ v )  

gives 

&'H'( kao v) > O  
g(x) = 2( 1 + H'kvcTo) 

and therefore xR < xo. Note that the amplitude attenuation factor due to the fluctuations 
does not appear in the dispersion relation ( 6 . 2 ) .  In this sense the phase shift and 
amplitude attenuation effects are decoupled. Finally, we remark that one normally 
expects the inequality ( 6 . 8 )  to be satisfied since it is physically intuitive that the presence 
of random scattering terms reduces the effective propagation speed of the wave. 

7. Discussion 

We have studied the propagation of SH waves in a layered elastic medium whose 
material parameters are stochastic functions of the vertical coordinate: this is done for 
the case of a statistically inhomogeneous layer as well as for the simpler statistically 
homogeneous model considered in 5 4 above. In both cases the equations of motion 
are solved up to a certain order in the fluctuation parameter and the effect of the 
random terms is broken up into an amplitude attenuation factor and a phase shift 
term. We find that there is no qualitative difference between the two attenuation 
factors. However, the dispersion relation which determines the phase velocity is very 
difficult to analyse in general. We focus on the dispersion for the statistically 
homogeneous model in comparison with the homogeneous case. In particular, we 
obtained a criterion which determines whether the symmetric fluctuations decrease the 
phase velocity. 

Finally, we have restricted attention to the case of a single random layer and a 
homogeneous half-space. However, there is no difficulty in extending the theory to 
the multi-layered case: the only point worth noting is that the initial data for the second 
and subsequent layers is a random vector. This fact only requires the replacement of 
fo in the expansions ( 3 . 3 )  and ( 3 . 6 )  by the known quantity (fa). 
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